Generative, Fully Bayesian, Gaussian, Openset Pattern Classifier

نویسنده

  • Niko Brümmer
چکیده

Observable patterns live in R and belong to K different classes. We are given a supervised training database, (X, L), where X represents the training patterns of all the classes and L represents their true class labels. We want to recognize the unknown classes to which new unlabelled test patterns belong. For this purpose we pretend there is a generative model, with unknown parameter Φ, that generates all train and test data. Although Φ is unknown, it is assumed to be the same for train and test. For the purposes of this exercise, we choose perhaps the simplest possible such generative model, which has multivariate normal, class-conditional distributions of the form:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Generative/Discriminative Bayesian Classifier

In this paper, we introduce a new restricted Bayesian network classifier that extends naive Bayes by relaxing the conditional independence assumptions, and show that it is partly generative and partly discriminative. Experimental results show that the hybrid classifier performs better than a purely generative classifier (naive Bayes) or a purely discriminative classifier (Logistic Regression) a...

متن کامل

Object classification by fusing SVMs and Gaussian mixtures

We present a new technique that employs support vector machines (SVMs) and Gaussian mixture densities (GMDs) to create a generative/discriminative object classification technique using local image features. In the past, several approaches to fuse the advantages of generative and discriminative approaches were presented, often leading to improved robustness and recognition accuracy. Support vect...

متن کامل

Optimal classifiers with minimum expected error within a Bayesian framework - Part II: Properties and performance analysis

In part I of this two-part study, we introduced a new optimal Bayesian classification methodology that utilizes the same modeling framework proposed in Bayesian minimum-mean-square error (MMSE) error estimation. Optimal Bayesian classification thus completes a Bayesian theory of classification, where both the classifier error and our estimate of the error may be simultaneously optimized and stu...

متن کامل

Accurate Bayesian Data Classification without Hyperparameter Cross-validation

We extend the standard Bayesian multivariate Gaussian generative data classifier by considering a generalization of the conjugate, normal-Wishart prior distribution and by deriving the hyperparameters analytically via evidence maximization. The behaviour of the optimal hyperparameters is explored in the high-dimensional data regime. The classification accuracy of the resulting generalized model...

متن کامل

Fully automatic brain tumor segmentation using a normalized Gaussian Bayesian Classifier and 3D Fluid Vector Flow

Brain tumor segmentation from Magnetic Resonance Images (MRIs) is an important task to measure tumor responses to treatments. However, automatic segmentation is very challenging. This paper presents an automatic brain tumor segmentation method based on a Normalized Gaussian Bayesian classification and a new 3D Fluid Vector Flow (FVF) algorithm. In our method, a Normalized Gaussian Mixture Model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.6143  شماره 

صفحات  -

تاریخ انتشار 2013